What is a Category? Sheaf? Topos? Semantics?

(Ian Price) & Quentin Schroeder & Luna Strah

Proof and Computation September 20, 2024

- Professor Coquand's talk had a high barrier to entry
- Explain some motivation / intuition for Categories / Sheaves / Toposes
- Introduce the definitions
- Say what these things are used for
- My contribution: Categories & Sheaves
- Apologies: these slides were rushed

What is a Category?

lan, Quentin, Luna

Preorders

Definition

A pre-order / quasi-order (poset) is a pair (P, \leq) where:

- P is a set, and
- \leq is a binary relation on *P* that is:
 - Reflexive: $\forall x \in P, x \leq x$,
 - $\ \ \, \text{Transitive: } \forall x,y,z\in P, (x\leq y \text{ and } y\leq z) \implies x\leq z.$

Proof relevant Posets

A Category is a Poset with evidence – Alex Kavvos

- A proposition $x \leq y$ should have a proof $p : x \leq y$
- It might have more that one
- Reflexivity becomes that for any x, there is a proof of it

$$x \mapsto \mathsf{id}_x : x \leq x$$

• Transitivity says there is a way to combine evidence

$$p: x \leq y, q: y \leq z \mapsto q \circ p: x \leq z$$

• These constructions should interact sensibly

Categories

Definition (Category)

A category C consists of a collection of objects A, B, C, \ldots and a collection of arrows f, g, h, \ldots such that

- Any arrow $f : \operatorname{dom}(f) \to \operatorname{cod}(f)$ has two objects $\operatorname{dom}(f)$ and $\operatorname{cod}(f)$.
- Given two compatible arrows $f : B \to C$, $g : A \to B$, there is a *composite arrow* $f \circ g : A \to C$.
- There is an *identity arrow* for every object A, $id_A : A \rightarrow A$.
- \circ is associative: $f \circ (g \circ h) = (f \circ g) \circ h$,
- and the id_A are identities for composition: $f \circ id = f = id \circ f$

Categories (Examples)

Example

Most mathematical objects can be bundled into categories: Set, Rel, Vect_ \mathbb{K} , ...

Example

Various objects can be thought of as categories: monoids, posets, ...

Example (3)

You can freely generate categories from graphs

$$1 \xrightarrow{f} 2$$

$$h = g \circ f \xrightarrow{g} 3$$

Once you have an object, you should ask "what are the morphisms between them?"

Definition (Monotone Functions)

A function $f : (P, \leq_P) \to (Q, \leq_Q)$ between two posets (P, \leq_P) and (Q, \leq_Q) is called *monotone* (or *order-preserving*) if:

$$\forall x, y \in P, x \leq_P y \implies f(x) \leq_Q f(y).$$

What happens when we add evidence?

Monotone Functions with Evidence

- We still send objects to objects $x \mapsto f(x)$
- but need to send proofs $p: x \leq y$ to proofs $f(p): f(x) \leq f(y)$
- $\bullet\,$ and we should do something sensible with id and $\circ\,$
- we have two proofs $id_{f(x)}, f(id_x) : f(x) \le f(x)$. Make them equal!
- and if we have proofs $p : x \le y$, $g : y \le z$, there are two proofs $f(q \circ p), f(q) \circ f(p) : f(x) \le f(z)$. Make them equal!

Functors

Definition (Functor)

A functor $F : C \to D$ between categories C and D is a pair of mappings on objects and arrows such that

- Given any C-object X, F(X) is a D-object.
- Given any C-arrow $f : A \to B$, $F(f) : F(A) \to F(B)$ is a D-arrow.

•
$$F(f \circ g) = F(f) \circ F(g)$$

•
$$F(\operatorname{id}_A) = \operatorname{id}_{F(A)}$$

Functor Examples

- Identity Functor
- Forgetful Functors
- Forgetful Functors
- Polynomial Functors
- Hom Functors
- Group Actions
- Automata (Quentin's Lightning Talk)
- Most things topologists care about
 - Fundamental Group
 - Homology
 - One Point Compactification

•

Arrows are more important than Objects - Every Category Theorist

Problem: How to define useful structures only by looking at arrows? Case Study: Products

- When we have a pair (x, y) we want to be able to get at the x and y.
- In Set, we have projection functions $\pi_X : X \times Y \to X$, $\pi_Y : X \times Y \to Y$
- We can compose these with functions that output pairs u: P o X imes Y

$$\pi_X \circ u : P \to X$$

$$\pi_{Y} \circ u : P \to Y$$

- Functions into pairs are equivalent to pairs of functions
- Can this help?

Definition (Product)

Let C be a category and let A, B be objects of C. A product of A and B consists of an object $A \times B$ and arrows $\pi_A : A \times B \to A$, $\pi_B : A \times B \to B$ which is universal. This means that for any other triple $(P, f : P \to A, g : P \to B)$ there exists a unique map making the following diagram commute.

Products are unique up to unique isomorphism.

Not all pairs of objects in a category have products and those that do don't necessarily "look like" pairs

- Set the usual Cartesian product
- Group direct product of groups
- Top the product space
- Graphs tensor product of graphs
- Rel disjoint union of relations
- A poset the meet of two objects

Some Resources

- 27 Unhelpful Facts About Category Theory Oliver Lugg
- Category Theory in Context Emily Riehl
- Basic Category Theory Tom Leinster
- Seven Sketches in Compositionality Brendan Fong, David Spivak
- The Joy of Abstraction Eugenia Cheng (Not Free)

Break for Questions

Categories, Sheaves, Topose

What is a Sheaf?

Figure: Example 56 – Sheaf Theory Through Examples

Scaring Undergrads in Analysis (Manifolds)

Definition 2.5.1. Let $k \leq n \in \mathbb{N}$. A k-dimensional smooth manifold (abbreviated as smooth k-manifold) in \mathbb{R}^n is a subset M of \mathbb{R}^n along with a family $(\Phi_i)_{i \in I}$ of smooth embeddings

$$\Phi_i: U_i \to M$$

called charts, such that $U_i \subset \mathbb{R}^k$ is an open set for each i, $\Phi_i(U_i)$ is relatively open in M (i.e., it is the intersection of an open set in \mathbb{R}^n and M), and

$$M = \bigcup_{i \in I} \Phi_i(U_i).$$

It is oriented if for each $i, j \in I$, if $V_{i,j} := \Phi_i(U_i) \cap \Phi_j(U_j)$ is non-empty, then the maps

$$\Phi_i|_{\Phi_i^{-1}(V_{i,j})}$$
 and $\Phi_j|_{\Phi_j^{-1}(V_{i,j})}$

have the same orientation. The manifold is compact if M is a compact subset of \mathbb{R}^n .

Figure: My Analysis IV Lecture Notes – Aaron Tikuisis

lan, Quentin, Luna

Categories, Sheaves, Toposes

Scaring Undergrads in Analysis (Analytic Continuation)

Definition (Analytic Continuation)

Suppose $f : D \subseteq \mathbb{C} \to \mathbb{C}$ is an analytic functions. f can be *analytically continued* to a region D' which intersects D if there exists an analytic function $g : D' \to \mathbb{C}$ such that f = g on $D \cap D'$

Figure: Riemann Surface of Natural Logarithm - Wikipedia

Global Sections

Figure: Example 125 – Sheaf Theory Through Examples

lan, Quentin, Luna

Categories, Sheaves, Toposes

The Definition[™]

Definition (Sheaf)

A sheaf on a topological space X is a presheaf (contravariant functor)

 $\mathcal{F}: \operatorname{Open}(X)^{\operatorname{op}} \to \operatorname{Sets}$

satisfying the following properties:

1. Locality: Suppose U is an open set, $\{U_i\}_{i \in I}$ is an open cover of U with $U_i \subseteq U$ for all $i \in I$, and $s, t \in \mathcal{F}(U)$ are sections. If $s|_{U_i} = t|_{U_i}$ 2. Gluing: Suppose U is an open set, $\{U_i\}_{i \in I}$ is an open cover of U with $U_i \subseteq U$ for all $i \in I$, and $\{s_i \in \mathcal{F}(U_i)\}_{i \in I}$ is a family of sections. If $s_i|_{U_i \cap U_j} = t_i|_{U_i \cap U_j}$ for all $i, j \in I$, then there exist a section $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all $i \in I$.

Topological Spaces

Definition (Sheaf)

A sheaf on a topological space X is a ...

Figure: From Wikipedia

lan, Quentin, Luna

Unravelling the definition

Definition (Sheaf)

A sheaf on a topological space X is a presheaf (contravariant functor)

$$\mathcal{F}: \mathsf{Open}(X)^{\mathsf{op}} \to \mathsf{Sets}$$

satisfying Locality and Gluing.

- \mathcal{F} maps each open set U to a set $\mathcal{F}(U)$.
- If $U \subseteq V$, then we have a function $\rho_U^V : \mathcal{F}(V) \to \mathcal{F}(U)$.
- $\rho_U^U = \operatorname{id}_U$.
- If $U \subseteq V \subseteq W$, then we have a function $\rho_U^W = \rho_V^W \circ \rho_U^V$.
- Sometimes we write $s|_U \coloneqq
 ho_U^V(s)$

Unravelling the definition

Definition (Sheaf)

A sheaf on a topological space X is a presheaf $\mathcal{F} : \operatorname{Open}(X)^{\operatorname{op}} \to \operatorname{Sets}$ satisfying Locality: Suppose U is an open set, $\{U_i\}_{i \in I}$ is an open cover of U with $U_i \subseteq U$ for all $i \in I$, and $s, t \in \mathcal{F}(U)$ are sections. If $s|_{U_i} = t|_{U_i}$ for all $i \in I$, then s = t. and Gluing.

To see if two objects agree everywhere (globally), check they agree on enough neighbourhoods (locally).

Definition (Sheaf)

A sheaf on a topological space X is a presheaf \mathcal{F} : Open $(X)^{\text{op}} \to$ Sets satisfying locality and **Gluing:** Suppose U is an open set, $\{U_i\}_{i \in I}$ is an open cover of of U with $U_i \subseteq U$ for all $i \in I$, and $\{s_i \in \mathcal{F}(U_i)\}_{i \in I}$ is a family of sections. If $s_i|_{U_i \cap U_j} = t_i|_{U_i \cap U_j}$ for all $i, j \in I$, then there exist a section $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all $i \in I$.

What Gluing means

Figure: Example 127 – Sheaf Theory Through Examples

lan, Quentin, Luna

Categories, Sheaves, Topose

The Definition[™]

Not so scary is it!

Definition (Sheaf)

A sheaf on a topological space X is a presheaf (contravariant functor)

 $\mathcal{F}: \operatorname{Open}(X)^{\operatorname{op}} \to \operatorname{Sets}$

satisfying the following properties:

1. Locality: Suppose U is an open set, $\{U_i\}_{i \in I}$ is an open cover of U with $U_i \subseteq U$ for all $i \in I$, and $s, t \in \mathcal{F}(U)$ are sections. If $s|_{U_i} = t|_{U_i}$ 2. Gluing: Suppose U is an open set, $\{U_i\}_{i \in I}$ is an open cover of U with $U_i \subseteq U$ for all $i \in I$, and $\{s_i \in \mathcal{F}(U_i)\}_{i \in I}$ is a family of sections. If $s_i|_{U_i \cap U_j} = t_i|_{U_i \cap U_j}$ for all $i, j \in I$, then there exist a section $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all $i \in I$.

What are Sheaves for?

- Sheaves are a way to organise local and global information
- Category of Sheaves on a site (long story) form a Topos
- Sheaves are useful in Algebra for defining Cohomology theories (another long story)
- Everything in Prof. Coquand's talk

Figure: The Simpsons, S05E19

	\sim		
lan, '	ų	uentin,	Luna

Categories, Sheaves, Toposes

A Book Recommendation

- Book Website
- it's free

Now to hand you over to Quentin...