Weihrauch Reducibility as a Lens

lan Price (countingishard.org)

Reducibility

Definition (Weihrauch Reducible)

Let X, Y, Z, W be represented spaces and let $f :\subseteq X \Rightarrow Y$, $g :\subseteq Z \Rightarrow W$ be partial multi-valued functions.

Then f is Weihrauch reducible to g, if there are computable partial functions $\Phi, \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that for all p with $\delta_X(p) \in \text{dom}(f)$, $\delta_Z(\Phi(p)) \in \text{dom}(g)$ and for all q with $\delta_W(q) \in g(\delta_Z(\Phi(p)))$, $\delta_Y(\Psi(p,q)) \in f(\delta_X(p))$.

$$p \xrightarrow{\Phi} \Phi(p)$$
 $\downarrow^f \qquad \downarrow^g$
 $g(p) \xleftarrow{\Psi(p,\cdot)} q$

Lenses

Theorem (Niu, Spivak)

Given polynomial functors p and q, a natural transformation (lens) $f : p \to q$ can be identified with a pair $(f_1, f^{\#})$ where $f_1 : p(1) \to q(1)$ is a function and $f^{\#} : q[f_1(-)] \to p[-]$ is a natural transformation (a family of functions $f_i^{\#} : q[f_1(i)] \to p[i]$ for $i \in p(1)$).

My Advisor Weighs In

Long Story Short

- Sets Bad, Type 2 computability Good
- $\bullet~\mathsf{Pasm}(\mathcal{K}_2^{\mathrm{rec}},\mathcal{K}_2)$ is not an LCCC, so can't define Polynomial Functors
- but you can mimic vertical-cartesian factorisation
- this is enough

Vertical-Cartesian factorisation

Thank You

Details at countingishard.org

