Weihrauch Problems as Containers

lan Price (countingishard.org) jww Cécilia Pradic

Turing Reducibility: A refresher

- A problem A is reducible to a problem B if there is a turing machine that can solve A given access to an oracle for B
- This is useful for looking at the structure of non-computable logical statements
- LPO: Decide if $w \in \{0,1\}^{\mathbb{N}}$ is constantly 0
- WKL: Find an infinite path in an infinite binary tree
- Q: Is LPO reducible to WKL, or vice versa? Equivalent? Incomparable?

What if you could only make a single oracle call?

$$\begin{array}{lll} \text{def problem (arg):} & & & & & & & \\ x = phi(arg) & & & & & & \\ res = oracle(x) & & & & & & \\ ans = psi(arg, res) & & & & & problem(arg) \xleftarrow{\psi(arg, \cdot)} res \end{array}$$

My lens (container morphism) sense is tingling...

My Advisor Weighs In

Containers

- Hopefully nothing I say will contradict Thorsten's mini-lecture (much)
- Containers are (roughly) the category theory equivalent of families of sets $(X_i)_{i \in I}$
- Containers $X \vartriangleright Y$ are pairs $(X \in \mathbb{C}, Y \in (C/X))$
- morphisms $(X \vartriangleright Y) \to (Z \vartriangleright W)$ are pairs $(\Phi : X \to Z, \Psi : (\Phi*)W \to Y \in (\mathbb{C}/X))$

Where we're at

- Category for Type 2 computability \checkmark (Pasm($\mathcal{K}_2^{\mathrm{rec}}, \mathcal{K}_2$))
- \bullet Weihrauch degrees \checkmark
- Lattice Operations \checkmark
- \bullet Monoidal Product \checkmark
- Composition of Containers ✓(Sorta)
- Strong Weihrauch Reducibility \checkmark (NEW)
- Fixed Points (Soon?)
- Quotient of Degrees
- Parallelisation

Thank you

Blog post at countingishard.org CiE submission on Arxiv